

Understanding Blockchain: Definitions, Properties, Architecture, and Comparisons

Mohammad H. Tabatabaei

Advisors: Roman Vitenberg, Hein Melling University of Oslo, University of Stavanger

Motivation:

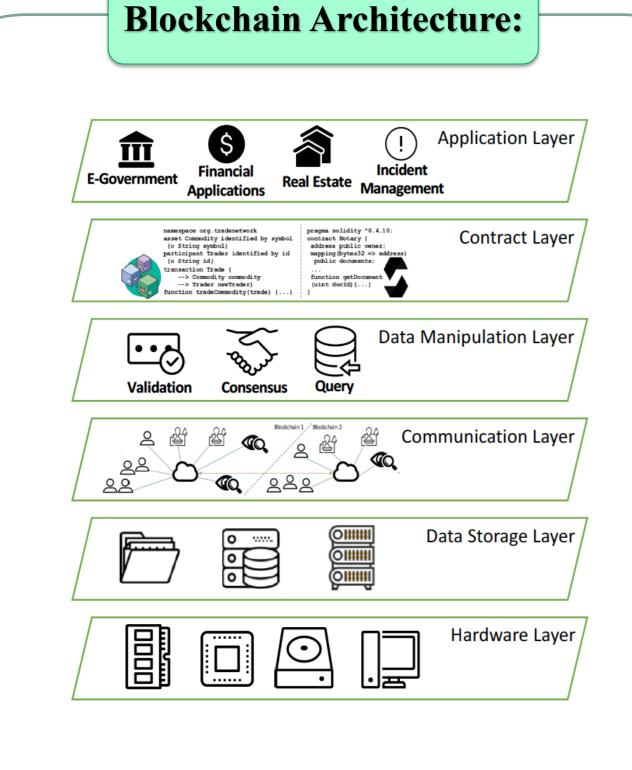
- Not having a clear definition and knowledge of blockchain systems in the state-of-the-art
- > The area is highly volatile: old definitions are no longer relevant
- \succ No taxonomies in existence

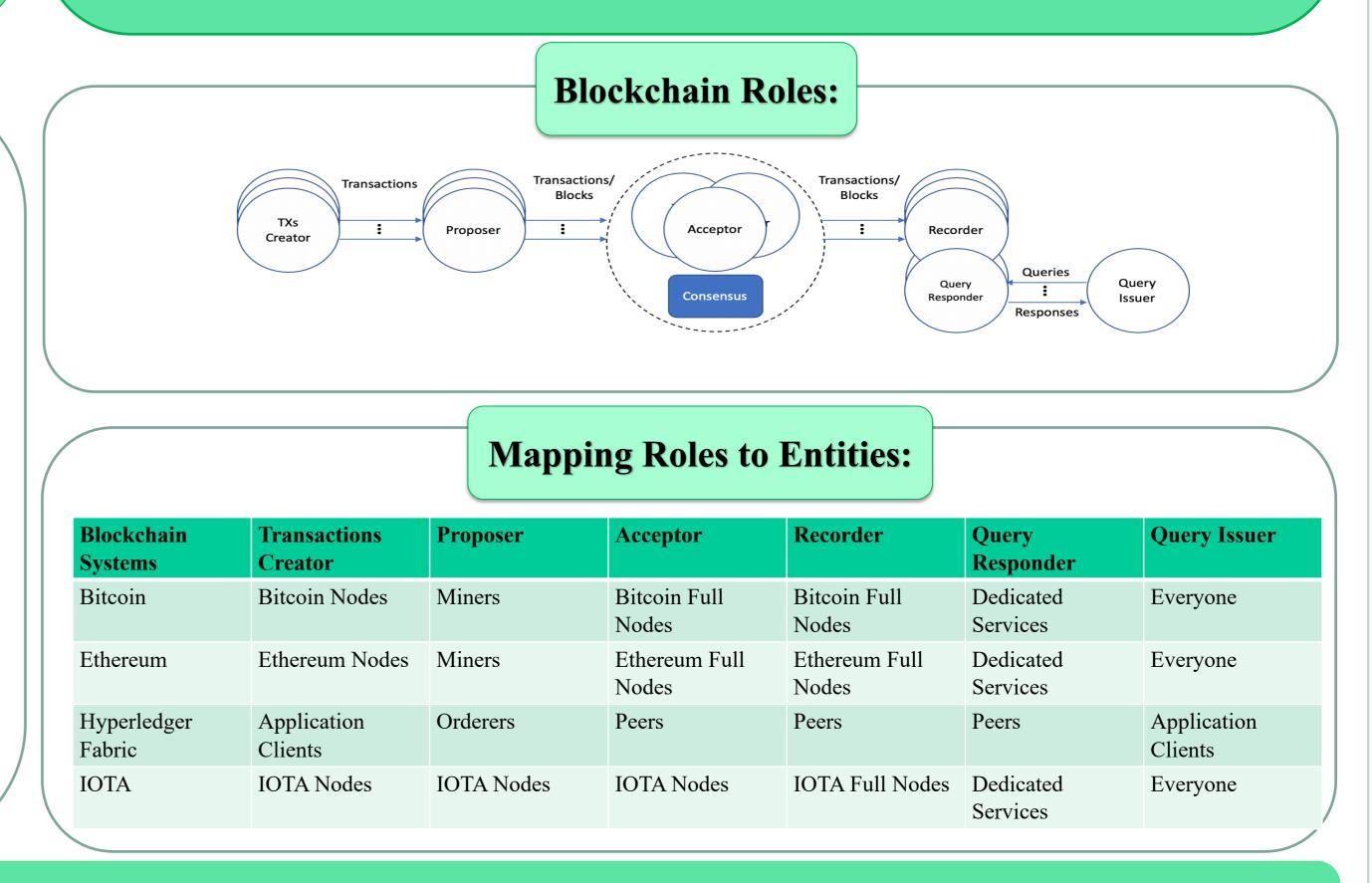
- Defining the main attributes of the blockchain systems
- > Defining representative attributes and properties of each layer in a layered blockchain architecture
- > Defining the roles of various entities in blockchain systems and interactions between them
- > Investigating representative blockchain systems to compare them based on the layers' attributes

Five Pillars of Blockchain Systems:

Contributions:

The followings are inherent blockchain properties. There are also other properties present in blockchain systems, but they are not specific to this technology.


- 1. Lack of trusted third party: There is no hierarchy of authority, and all decisions are made by consensus between the participants, without a central intermediator.
- 2. Verifiability: More than just one trusted authority could be allowed to verify the correctness of the transactions, blocks, and states of the system
- 3. Transparency: The content of transactions, states of them, and associations of the transactions with identities are open to viewing
- 4. Immutability: Blockchain's data is protected against any modification by misbehave or unconscious


Blockchain Definitions*:

- 1. Blockchain is a system that uses the data structure of bitcoin but extends the functionality.
- 2. Blockchain is a system that maintains a chain of blocks.
- Blockchain is a system that maintains a ledger of all transactions
- 4. Blockchain is a system with distributed non-trusting parties collaborating without a trusted intermediary.
- 5. Blockchain is a system that uses smart contracts.

*Jacobsen, Hans Arno; Sadoghi, Mohammad; Tabatabaei, Mohammad Hossein; Vitenberg, Roman; Zhang, Kaiwen. Blockchain Landscape and AI Renaissance: The Bright Path Forward. I: Proceedings of the 19th International Middleware Conference. Association for Computing Machinery (ACM) 2018 ISBN 978-1-4503-5702-9. p. -

- participants. 5. Traceability: Providing an easy way to identify the origin of data, its creator, and its lifecycle.

Comparing blockchain systems based on the layers' attributes:

> Two tables below are samples of our results (Comparisons for data storage layer, data manipulation layer, contract layer, and application layer are given in our paper)

> Negative and positive points of the systems can be inferred from the tables in order to identify the gaps

Hardware Layer of Different Blockchains:

Communication Layer of Different Blockchains:

Blockchain Systems	Limiting Resource	Crypto Puzzle Solving Device	Additional Hardware for Security	
Bitcoin	Processor	ASIC	Hardware-based Trusted Execution Environment	
Ethereum	Memory Bandwidth	GPU	Hardware-based Trusted Execution Environment	
Hyperledger Fabric	Application Dependent	No Device	Application Dependent	
ΙΟΤΑ	Processor & Network Bandwidth	Proprietary Pro- cessor (JINN - in progress)	Not Applicable	

Blockchain Systems	Granularity	Protocol	Ordering Guarantees	Privacy & Security Guarantees	Propagation Time
Bitcoin	Whole Network	Push-gossiping Inventory & Pull by Nodes	No Guarantee	No Guaranty	About 12.6 seconds
Ethereum	Whole Network	Push-flooding	No Guarantee	Encrypted and authenticated messages	No studies conducted
Hyperledger Fabric	Per Channel	Push-gossiping and Pull-gossiping blocks	Atomic Communication	Authenticated channels	Application depender
ΙΟΤΑ	Whole Network	Push-flooding	No Guarantee	Encrypted data streams (MAM Protocol)	No studies conducted

Future Works:

- > To find the fields that are still open for further studies by analyzing the layered features of the mentioned blockchain systems
- > To do experiments on the representative blockchain systems and compare them based on the quantified attributes such as throughput, latency, and storage overhead
- > To identify unresolved technical challenges in the current blockchain implementations based on the experiments