CREDENCE Workshop

Performance Modeling and Analysis of the Bitcoin Inventory Protocol

Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi

École de technologie supérieure (ÉTS) University of Québec Montréal, Canada

August 2019

Stavanger

- <u>Performance modeling</u>: Calculate/predict performance metrics
- <u>DApps</u>: Modeling helps choosing and tuning the right DLT system
- <u>Bitcoin and altcoins</u>: Impact of varying **blockchain parameters and network conditions** to assess the health of a particular Bitcoin-based system

Contributions of the work

- 1. Model the Bitcoin overlay network using random graphs.
- 2. Model the block propagation algorithm of Bitcoin using waves.
- 3. Present mathematical equations for important performance metrics: block propagation delay and traffic overhead, as well as fork occurrence probability.
- 4. Implement the model using a **network simulator (OMNet++)** and **validate** the results with Bitcoin historical data.
- 5. Demonstrate the impact of the **block size** and **average number of connections per node** and **P2P bandwidth** on the block propagation delay and fork occurrence probability.
- 6. We estimate the **weight of each branch** in case of fork occurrence.

Modeling the Bitcoin overlay network

- Overlay network as a graph: G(V, L).
- If there is a link between node i and node j, then $(i, j) \in L$.
- Random graph $G_p(N)$: N nodes and link probability p.
- A random graph models an *ideal decentralized network*
 - Relay nodes or mining pools are considered in extension of our work.
- Can use p to derive M (average number of connections per node)

(increasing p in a random graph)

Inventory-based protocol of Bitcoin

Block dissemination (Wave 1)

- n_0 : node who mined a block
- Receiving nodes in wave 1: $W_1 = \{n_1^1, n_2^1, \dots, n_M^1\}$
- Each node has a **forwarding probability** p_f to reply the *inv* message with *getdata* message
- Forwarding probability for the first wave: $p_{f_1} = 1$

Wave 2 analysis

- In wave 2, $p_{f_2} \neq 1$
- Some nodes contacted in wave 2 received it in wave 1 already:

$$P_{f_2} = \frac{N - 1 - |W_1|}{N - 1}$$

• Number of block copies obtained during this wave:

$$|W_2| = [p_{f_1} p_{f_2} \boldsymbol{M}^2]$$

Analysis for wave *i*
$$|W_j| = [M^j \prod_{k=1}^{j-1} p_{f_k}]$$
$$p_{f_i} = \frac{N - 1 - \sum_{j=0}^{i-1} M^j \prod_{k=1}^{j-1} p_{f_k}}{N - 1}$$

We use this model to create formulas for calculating:

- 1. Block propagation delay
- 2. Traffic overhead
- 3. Fork probability
- 4. Branch weights during a fork

Comparison with Bitcoin data (M=32)

Block Size (MB)

Block size impact on the fork probability

Branch weights (t < t' < t + T)

Publications

• Performance Modeling and Analysis of the Bitcoin Inventory Protocol.

Yahya Shahsavari, Kaiwen Zhang, Chamseddine Talhi. *IEEE DAPPs* 2019. Best Paper Award.

• A Theoretical Model for Fork Analysis in the Bitcoin Network. Yahya Shahsavari, Kaiwen Zhang, Chamseddine Talhi. *IEEE BLOCKCHAIN 2019*.

Takeaway points

- Current lower bound on number of connections for safety: 4 for Bitcoin (10,000 nodes)
- Formulas for calculating:
 - Block propagation delay
 - Traffic overhead
 - Fork probability
 - Branch weights
- Important parameters include, but are not limited to:
 - Number of connections
 - Block size
 - Block time
 - Inter-block time (time between leading block and trailing block at the same height)
- Key observation: **32 connections is the sweet spot** for the current Bitcoin network
 - Reduces traffic overhead and branch weight of the trailing block
 - Validated by reports which determined that the current average is 32 in Bitcoin
- Currently working on considering relay networks and mining pools Shahsavari, Zhang, Talhi

Backup slides

How to choose a good value of p and M?

- Finding a good **lower bound** for *p*:
 - If *p* is too low, the network contains partitions: blocks cannot be fully propagated (perpetual branching!)
- If $p \ge \frac{\log(N)}{N}$, then $G_p(N)$ becomes a connected graph with very high probability.
- This is therefore a very **critical lower bound** for safety!
- Each node on average has *M* connections to other nodes
- To form a connected graph with high probability, it is sufficient that:

$$M \ge \left\lceil \frac{N-1}{N} \log(N) \right\rceil$$

Current lower bound for Bitcoin network

- Current size of 10,000 node can be supported with M = 4
- Bitcoin protocol imposes a default limit of 8 outgoing connections
- This limit is sufficient for a size of ~100,000,000 nodes
- However, the reported average number of connections in Bitcoin is 32
- Next: what is a good value of *M* beyond the lower bound?
 - To answer this, we need to model block propagation

GLOBAL BITCOIN NODES DISTRIBUTION

Reachable nodes as of Sat Apr 06 2019 21:55:05 GMT-0700 (Pacific Daylight Time).

9659 NODES

24-hour charts »

Top 10 countries with their respective number of reachable nodes are as follow.

RANK	COUNTRY	NODES
1	United States	2459 (25.46%)
2	Germany	1881 (19.47%)
З	France	603 (6.24%)
4	Netherlands	500 (5.18%)
5	China	355 (3.68%)
6	Canada	350 (3.62%)
7	United Kingdom	309 (3.20%)
8	Singapore	298 (3.09%)
9	n/a	273 (2.83%)
10	Russian Federation	263 (2.72%)
More (97) » https://bitnodes.earn.com/		

Calculating the block propagation delay

- 100% block propagation: $\sum_{i=1}^{K} M^{i} \prod_{j=1}^{i-1} p_{f_{j}} = N$
- *K* = Total number of waves needed for 100% propagation
- D = Block propagation delay

$$D = \mathbf{K}(D_{v} + \frac{S_{i}}{B} + Y_{I} + D_{g} + \frac{S_{g}}{B} + Y_{G} + D_{b} + \frac{\mathbf{S}_{b}}{B} + Y_{B})$$

- B = Bandwidth of each link
- D_v : Block validation time, D_g : *inv* message processing time, D_b : *getdata* message processing time
- Y_I, Y_G, Y_B : Signal propagation delay for: *inv* message, *getdata* message, and the propagated block, respectively
- S_i, S_g, S_b: Size of *inv* message, *getdata* message, and the block, respectively
 Shahsavari, Zhang, Talhi

Calculating the traffic overhead

- Traffic overhead: % of timed-out *inv* messages.
- Wave *i*:

$$H_{i} = \frac{\left(1 - p_{f_{i}}\right)M^{i} \prod_{j=1}^{i-1} p_{f_{j}}}{N - 1}$$

• Overall overhead:

$$\overline{H} = \frac{1}{N-1} \sum_{i=1}^{K} (1-p_{f_i}) M^i \prod_{j=1}^{i-1} p_{f_j}$$

- -

Simulating block propagation using OMNET++

Utility of each wave with varying M

- *M*=8: minimum for Bitcoin protocol
- *M*=32: observed Bitcoin network

Block propagation analysis

Shahsavari, Zhang, Talhi

Block propagation analysis

Conclusion

- Although the throughput of the Bitcoin can be increased by choosing a bigger size for blocks, this can cause a significant increase in block propagations delay.
- The delay can be reduced by increasing number of connections per node, but this has the drawback of increased traffic overhead.

What is a Fork?!

 $\exists b, b' \in \mathcal{B} and b \neq b' | h_b = h_{b'}$

Forks can occur in one of these situations:

Network isolation

> Due to poor connectivity, network may become partitioned

• Changes in core components of the blockchain protocol

- ➢ Soft forks
- Hard forks

Miners deviation from the standard protocol

- Temporary block withholding
- ➤ Selfish mining
- Feather forking attacks

Block propagation delay

> Two different miners mine a block at almost the same time

Fork dissemination model

- n_0 : node who mined the block b
- Receiving nodes in wave 1: $W_1 = \{n_1^1, n_2^1, \dots, n_M^1\}$
- Each node has a **forwarding probability** p_f to reply the *inv* message with *getdata* message
- Forwarding probability for the first wave: $p_{f_1} = 1$
- At this point, the competing block b' has not been mined yet

Wave 1 for block b'

- Suppose b' is mined at time t': t < t' < t + T
- T: wave length (1 wave time length)
- Receiving nodes in wave 1: W'_1 = $\{n'_1^1, n'_2^1, ..., n'_M^1\}$
- Forwarding probability for the first wave for the block $b': p'_{f_1} \neq 1$.

•
$$p_{f_1'} = \frac{N-1-|W_1|}{N-1}$$

• $|W_1| = [p_{f_1}M]$

General formulas for wave *i* and time t'

- Recursive function calculated with results from previous waves of both blocks
- Mining time t' is generalized as follows:

$$t + (m-1)T < t' < t + mT$$

$$\bullet \ p_{f_{i}} = \frac{N - 1 - \sum_{j=0}^{i-1} M^{j} \prod_{k=1}^{j} p_{f_{k}} - \sum_{j=0}^{i-1} M^{j} \prod_{k=1}^{j} p_{f_{k}'}}{(1 < i \le K)}$$

$$\bullet \ p_{f_{i}'} = \frac{N - 1 - \sum_{j=0}^{i} M^{j} \prod_{k=1}^{j} p_{f_{k}} - \sum_{j=0}^{i-1} M^{j} \prod_{k=1}^{j} p_{f_{k}'}}{N - 1}$$

$$(1 < i - m \le K)$$

Fork dissemination model for wave 2

• Forwarding probability for the second wave: $p_{f_2} \neq 1$.

•
$$P_{f_2} = \frac{N-1-|W_1|-|W_1'|}{N-1}$$

- $|W_1| = [p_{f_1}M]$
- $|W_1'| = [p_{f_1'}M]$

Forwarding probability for the second wave: p_{f2} ≠ 1.
P_{f2}' = N-1-|W₁|-|W₁'|-|W₂|/N-1
|W₂| = [p_{f1}p_{f2}M²]

Demo of our simulation using OMNET++

Branch weights (t + 2T < t' < t + 3T)

P2P bandwidth impact on the fork probability

