
Gorums: New Abstractions for Implementing
Quorum-based Systems

Tormod Erevik Lea, Leander Jehl and Hein Meling

hein.meling@uis.no

August 5th, 2019

2/50

Outline

I Introduction
I Background: Quorums and Applications
I Gorums’ Abstractions
I Several Case Studies and Some Experimental Evaluation
I Conclusions and Feedback

Gorums University of Stavanger

3/50

Gorums framework

Simplify design and implementation
of fault-tolerant quorum-based
protocols

Gorums University of Stavanger

4/50

Majority Quorum Example

a

b

c d

ewrite()

read()

Gorums University of Stavanger

5/50

Other Types of Quorum Systems

I Read/write quorums
I Weighted quorums
I Grid quorums
I Byzantine quorums

Gorums University of Stavanger

6/50

How can we build a quorum system?

Gorums University of Stavanger

7/50

Invoke a Quorum of Replicas

I Access state stored at each replica

I To contact a quorum:
I Must collect and associate replies from individual replicas
I Not difficult in general, but adds complexity

Gorums University of Stavanger

7/50

Invoke a Quorum of Replicas

I Access state stored at each replica
I To contact a quorum:

I Must collect and associate replies from individual replicas
I Not difficult in general, but adds complexity

Gorums University of Stavanger

8/50

Invoke a Quorum using RPCs

a

b

c d

e
Client

Replicas

RPC

RPC

RPC

Gorums University of Stavanger

9/50

Invoke a Quorum using a Quorum Call

a

b

c d

e
Client

Replicas

Configuration

Quorum call

Gorums University of Stavanger

10/50

A Single-server Read/Write Storage
1 service Storage {
2 rpc Read(ReadRequest) returns (State) {
3

4 }
5 rpc Write(State) returns (WriteReply) {
6

7 }
8 }
9

10 message State {
11 string Value = 1;
12 int64 Timestamp = 2;
13 }
14

15 message WriteReply {
16 bool New = 1;
17 }
18

19 message ReadRequest {}

Gorums University of Stavanger

11/50

A Quorum-based Read/Write Storage
1 service Storage {
2 rpc Read(ReadRequest) returns (State) {
3 option (gorums .qc) = true;
4 }
5 rpc Write(State) returns (WriteReply) {
6 option (gorums .qc) = true;
7 }
8 }
9

10 message State {
11 string Value = 1;
12 int64 Timestamp = 2;
13 }
14

15 message WriteReply {
16 bool New = 1;
17 }
18

19 message ReadRequest {}

Gorums University of Stavanger

12/50

Gorums Abstractions

I Configurations
I Quorum Call
I Quorum Functions

Gorums University of Stavanger

13/50

Abstraction #1: Configurations

I Replicas grouped into configurations
I Configuration implements the StorageClient interface

I Quorum specification object:
I Specifies a quorum system for the configuration
I Simple examples only need quorum size parameter

Gorums University of Stavanger

13/50

Abstraction #1: Configurations

I Replicas grouped into configurations
I Configuration implements the StorageClient interface
I Quorum specification object:

I Specifies a quorum system for the configuration
I Simple examples only need quorum size parameter

Gorums University of Stavanger

14/50

Configuration and Quorum Specification
type Configuration s t r u c t {

id u i n t 3 2
nodes []* Node
n i n t
mgr * Manager
qspec QuorumSpec

}

type MajorityQSpec s t r u c t {
quorumSize i n t

}

Gorums University of Stavanger

14/50

Configuration and Quorum Specification
type Configuration s t r u c t {

id u i n t 3 2
nodes []* Node
n i n t
mgr * Manager
qspec QuorumSpec

}

type MajorityQSpec s t r u c t {
quorumSize i n t

}

func (c * Configuration) Read(ctx Context , a * ReadRequest) (* State , e r r o r) {
...
replyChan := make(chan internalValue , c.n)
f o r _, n := range c.nodes {

go callGRPCRead (ctx , a, n, replyChan)
}
...

}

Gorums University of Stavanger

15/50

Abstraction #2: Quorum Call

I Invoke quorum call on a configuration
I Wait for responses from a quorum

WriteReply, Error := config.Write(state State)

Gorums University of Stavanger

16/50

Quorum Call Illustrated

gRPC servers

Gorums client

Gorums

Quorum Call

Quorum
Function

Invoke
RPCs

S1 S3S2

RequestReplies

Gorums University of Stavanger

17/50

Quorum Logic

I A quorum call needs to determine
I If a quorum of responses have been received
I What kind of response to return

I Quorum logic: rules for verifying a quorum from
individual replies

Gorums University of Stavanger

18/50

Motivation: Separation of Concerns

I Quorum logic is often intertwined with protocol logic
I Our goal: separate quorum logic from the main control

flow of a protocol’s operation

Gorums University of Stavanger

19/50

Abstraction #3: Quorum Functions

I Gorums uses quorum functions to specify quorum logic
I Each service method has a developer-defined quorum

function

WriteReply, Bool := qs.WriteQF(replies []WriteReply)

I Gorums runtime calls this quorum function for each reply
received

Gorums University of Stavanger

20/50

Quorum Specification Interface

type QuorumSpec i n t e r f a c e {
ReadQF (replies []* State) (* State , bool)
WriteQF (replies []* WriteReply) (* WriteReply , bool)

}

Gorums University of Stavanger

21/50

Quorum Function #1 (simple majority)

Algorithm 1 Simple quorum function
1: func (qs QuorumSpec) ReadQF(replies []State)
2: if len(replies) ≥ qs.QSize then . check quorum size
3: return replies[0], true . quorum, return reply
4: return nil, false . no quorum yet

Gorums University of Stavanger

22/50

Quorum Function #2 (basic reply checking)

Algorithm 2 Paxos first phase quorum function
1: func (qs QuorumSpec) PaxosPrepareQF(replies []Promise)
2: if len(replies) < qs.majQSize then . majority quorum size
3: return nil, false . no quorum yet, await more replies
4: reply := new(Promise) . initialize reply with nil/0 fields
5: for r := range replies do
6: if r.ballot > reply.ballot then
7: reply.ballot := r.ballot
8: if r.vballot ≥ reply.vballot then
9: reply.vballot := r.vballot

10: reply.value := r.value
11: return reply, true . quorum found

Gorums University of Stavanger

23/50

Quorum Function #3 (complex)

Algorithm 3 EPaxos PreAccept quorum function
1: func (qs QuorumSpec) PreAcceptQF(replies []PreAccReply)
2: if replies[len(replies)−1].Type = Abort then
3: return replies[len(replies)− 1], true . single Abort
4: if len(replies) < qs.SlowQSize then
5: return nil, false . no quorum yet
6: reply := new(PreAccReply) . initialize reply with nil/0 fields
7: for r := range replies do
8: if r.Type = Conflict then
9: reply.Type := Conflict

10: reply.Conflicts := reply.Conflicts ∪ r.Conflicts
11: if reply.Type = Ok ∧ len(replies) < qs.FastQSize then
12: reply.Type := Conflict
13: return reply, false
14: return reply , true

Gorums University of Stavanger

24/50

Quorum Function Template

Template for quorum functions
0: func (qs QuorumSpec) MethodQF(replies []MethodReply)
1: if qs.Abort(replies[len(replies)− 1]) then . check last reply

return replies[len(replies)− 1], true . abort call
2: if len(replies) < qs.QSize then . check quorum size

return nil, false . no quorum yet, await more replies
3: if ¬qs.IsQuorum(replies) then . check content for quorum

return nil, false . no quorum yet, await more replies
4: reply := qs.Combine(replies) . combine replies into single reply
5: if qs.WaitForMore(replies) then

return reply, false . return possible but prefer waiting
6: return reply, true . terminate call and return

Gorums University of Stavanger

25/50

Quorum Call Semantics

QFunc return Quorum call action
Reply, Bool return Reply, Error

1 retval , true return retval , nil and terminate call
2 retval , false if possible: wait for further replies

else: return retval , IncompleteError

Invoked by Gorums:
WriteReply, Bool := qs.WriteQF(replies []WriteReply)

User code:
WriteReply, Error := config.Write(state State)

Gorums University of Stavanger

26/50

Implementation

I Gorums is implemented as a library in Go
I Code generation from service definition:

I Creates a library for clients (and servers)
I Enabling invocation of quorum calls on configurations

I Builds on established toolchain:
I Protocol Buffers and gRPC

Gorums University of Stavanger

27/50

Implementation Overview

Gorums
client

Configuration
Manager

Configuration 2

Configuration 1
Servers

S1

S2

S3

S4

S5

S6

S7

Protocol
client

Protocol
client

Read()

Write()

Legend:
Dispatcher

Quorum Func

Gorums University of Stavanger

28/50

Code Generation

service Storage {
rpc Read(Request) returns (State) {}
rpc Write(State) returns (Response) {}
…

}

func(c *Configuration) Write(s *State) *Response {
...

}

...

Compiler
w/plugins

Service definition using IDL

Generated source/library

ServerClient

Server
Client Server

Sx

RPC

Quorum call

Gorums University of Stavanger

29/50

Case Studies
I Reconfigurable Atomic Storage

I SmartMerge [DISC’15], DynaStore and Rambo
I Evaluating different reconfiguration algorithms [OPODIS’16]

I Simple Majority Quorums
I Consensus: Single-decree Paxos
I State machine replication: Raft

I Latency-efficient Quorums
I State machine replication: EPaxos [SOSP’13]
I Evaluate complex quorum logic [IDCDS’17]

I Byzantine Quorums: Byzantine Storage
I Requires verifying digital signatures in the quorum function
I Evaluate different quorum functions

I Erasure Coded Distributed Storage
I Requires encoding/decoding of data and parity shards

I Asynchronous Quorum Call
I Futures, Correctables, and Streaming replies

Gorums University of Stavanger

30/50

Initial Motivation: Reconfiguration

I Reconfiguration: dynamically changing the replica set
I Difficult to implement correctly
I Previous work: implemented a Paxos-based RSM with

support for several reconfigurations protocols

Gorums University of Stavanger

31/50

Initial Motivation: Reconfiguration

R1

R2

R3

R4

R5

Client
Configuration 1

Quorum call

Gorums University of Stavanger

31/50

Initial Motivation: Reconfiguration

R1

R2

R3

R4

R5

Client Configuration 2

Quorum call

Gorums University of Stavanger

32/50

Simple Majority Quorums

Gorums University of Stavanger

33/50

Single-decree Paxos: Non-faulty Execution

S5

S4

S3

S2

S1
Leader

〈Prepare, 1〉

〈Promise, 1〉

〈Accept, 1, m1, 1〉

〈Learn, 1, m1〉

m1

〈Commit, 1, m1〉

m1

m1

m1

m1

Gorums University of Stavanger

34/50

Single-decree Paxos: Proto File

1 service SinglePaxos {
2 rpc Prepare (PrepareMsg) returns (PromiseMsg) {
3 option (gorums .qc) = true;
4 }
5 rpc Accept (AcceptMsg) returns (LearnMsg) {
6 option (gorums .qc) = true;
7 }
8 rpc Commit (LearnMsg) returns (Empty) {
9 option (gorums .qc) = true;

10 }
11 }

Gorums University of Stavanger

35/50

Single-decree Paxos: Proto File 2
1 message PrepareMsg {
2 uint32 rnd = 1;
3 }
4

5 message PromiseMsg {
6 uint32 rnd = 1;
7 uint32 vrnd = 2;
8 Value vval = 3;
9 }

10

11 message AcceptMsg {
12 uint32 rnd = 1;
13 Value val = 2;
14 }
15

16 message LearnMsg {
17 uint32 rnd = 1;
18 Value val = 2;
19 }

Gorums University of Stavanger

36/50

Single-decree Paxos: Protocol Phases

func (p * Proposer) runPaxosPhases () e r r o r {
// PHASE ONE: send Prepare to obtain quorum of Promises
preMsg := & PrepareMsg {Rnd: p.crnd}
prmMsg , err := p. config . Prepare (preMsg)

Gorums University of Stavanger

36/50

Single-decree Paxos: Protocol Phases

func (p * Proposer) runPaxosPhases () e r r o r {
// PHASE ONE: send Prepare to obtain quorum of Promises
preMsg := & PrepareMsg {Rnd: p.crnd}
prmMsg , err := p. config . Prepare (preMsg)

// PHASE TWO: send Accept to obtain quorum of Learns
i f prmMsg . GetVrnd () != Ignore {

// promise msg has a locked -in value; update proposer state
p.cval = prmMsg . GetVval ()

}
// use local proposer ’s cval or locked -in value from promise msg , if any.
accMsg := & AcceptMsg {Rnd: p.crnd , Val: p.cval}
lrnMsg , err := p. config . Accept (accMsg)

Gorums University of Stavanger

36/50

Single-decree Paxos: Protocol Phases

func (p * Proposer) runPaxosPhases () e r r o r {
// PHASE ONE: send Prepare to obtain quorum of Promises
preMsg := & PrepareMsg {Rnd: p.crnd}
prmMsg , err := p. config . Prepare (preMsg)

// PHASE TWO: send Accept to obtain quorum of Learns
i f prmMsg . GetVrnd () != Ignore {

// promise msg has a locked -in value; update proposer state
p.cval = prmMsg . GetVval ()

}
// use local proposer ’s cval or locked -in value from promise msg , if any.
accMsg := & AcceptMsg {Rnd: p.crnd , Val: p.cval}
lrnMsg , err := p. config . Accept (accMsg)

// PHASE THREE: send Commit to obtain a quorum of Acks
ackMsg , err := p. config . Commit (lrnMsg)

}

Gorums University of Stavanger

37/50

Latency-efficient Quorums

Gorums University of Stavanger

38/50

Latency-efficient Quorums

I EPaxos: State machine replication protocol
I Complex quorum logic

I Majority and fast quorums

Gorums University of Stavanger

39/50

Latency-efficient Quorums: Quorum Function

Algorithm 5 EPaxos PreAccept quorum function
1: func (qs QuorumSpec) PreAcceptQF(replies []PreAccReply)
2: if replies[len(replies)−1].Type = Abort then
3: return replies[len(replies)− 1], true . single Abort
4: if len(replies) < qs.SlowQSize then
5: return nil, false . no quorum yet
6: reply := new(PreAccReply) . initialize reply with nil/0 fields
7: for r := range replies do
8: if r.Type = Conflict then
9: reply.Type := Conflict

10: reply.Conflicts := reply.Conflicts ∪ r.Conflicts
11: if reply.Type = Ok ∧ len(replies) < qs.FastQSize then
12: reply.Type := Conflict
13: return reply, false
14: return reply , true

Gorums University of Stavanger

40/50

Experimental Evaluation

I The cost of abstraction
I Two sets of benchmarks:

I Micro-benchmarks
I EPaxos system benchmarks

I Original EPaxos modified to use Gorums

Gorums University of Stavanger

41/50

Gorums Micro-benchmarks

500 1,000 1,500 2,000
gRPC (non-replicated)

gRPC-C q =1, n=1
gRPC-C q =1, n=3
gRPC-C q =2, n=3
Gorums q =1, n=1
Gorums q =1, n=3
Gorums q =2, n=3

Throughput (request/s)

Gorums University of Stavanger

42/50

EPaxos Benchmarks

16 B request size

2 4 6 8
EPaxos-gobin
EPaxos-proto

EPaxos-gorums

·105

Throughput (requests/s)

1 kB request size

1 2 3 4 5
EPaxos-gobin
EPaxos-proto

EPaxos-gorums

·104

Throughput (requests/s)

Gorums University of Stavanger

43/50

Byzantine Storage

Gorums University of Stavanger

44/50

Byzantine Storage: Overview

I Authenticated-Data Byzantine Quorum
I Textbook algorithm [RSDP]
I Single Writer: digitally signs and updates storage servers
I Multiple Readers: read latest version from storage servers and

verify the writer’s signature

I Assumptions:
I Servers may be Byzantine faulty
I Readers and the writer are non-Byzantine
I Algorithm need n = 3f + 1 servers to tolerate f faulty servers
I Thus, (n + f)/2 valid replies form a quorum

Gorums University of Stavanger

44/50

Byzantine Storage: Overview

I Authenticated-Data Byzantine Quorum
I Textbook algorithm [RSDP]
I Single Writer: digitally signs and updates storage servers
I Multiple Readers: read latest version from storage servers and

verify the writer’s signature
I Assumptions:

I Servers may be Byzantine faulty
I Readers and the writer are non-Byzantine
I Algorithm need n = 3f + 1 servers to tolerate f faulty servers
I Thus, (n + f)/2 valid replies form a quorum

Gorums University of Stavanger

45/50

Byzantine Storage: Architecture

Trusted Components
(Compute Nodes)

Trusted Components

Writer
Client

Untrusted Components
(Storage Nodes)

LBNL

ORNL

SDSC

LLNL

Write
() Read

()

Gorums University of Stavanger

46/50

Byzantine Storage: Quorum Specification
type AuthDataQ s t r u c t {

n i n t // size of system
f i n t // tolerable number of failures
q i n t // quorum size q=(n+f)/2
pub *ecdsa. PublicKey // public key of the writer

}

func (aq * AuthDataQ) ReadQF (replies []* Value) (* Value , bool) {
i f l e n (replies) <= aq.q {

r e t u r n n i l , f a l s e // not enough replies
}
f o r _, reply := range replies {

i f aq. verify (reply) {
i f reply. Timestamp <= highest . Timestamp {

co nt in ue
}
highest = reply

}
}
r e t u r n highest , t r u e

}
Gorums University of Stavanger

47/50

Performance Evaluation of Quorum Functions

I Easy to test and compare different quorum functions for
same protocol

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Insecure
Secure No Verify

Sequential
Last Reply

Parallel

Latency (ms), median and 99th percentile

Gorums University of Stavanger

48/50

Ongoing and Future Work

I Model-based Testing techniques to improve correctness
I Meta configurations
I Pre-call adaptation

I Sign outgoing messages
I Split and encode outgoing messages

I All-to-all communication between servers
I Useful in many Byzantine fault tolerant protocols

I More protocol examples

Gorums University of Stavanger

49/50

Conclusions

I Gorums’ Abstractions
I force separation of protocol logic and quorum logic
I seems to work well for a diverse set of protocols

I Easy to test quorum functions without running full protocol
I Throughput and latency overhead is mostly negligible

Gorums University of Stavanger

50/50

Thank you!
Questions?

http://www.github.com/relab/gorums

Gorums University of Stavanger

http://www.github.com/relab/gorums

