
Gorums: New Abstractions for Implementing
Quorum-based Systems

Tormod Erevik Lea, Leander Jehl and Hein Meling

hein.meling@uis.no

August 5th, 2019



2/50

Outline

I Introduction
I Background: Quorums and Applications
I Gorums’ Abstractions
I Several Case Studies and Some Experimental Evaluation
I Conclusions and Feedback
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Gorums framework

Simplify design and implementation
of fault-tolerant quorum-based
protocols
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Majority Quorum Example
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Other Types of Quorum Systems

I Read/write quorums
I Weighted quorums
I Grid quorums
I Byzantine quorums
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How can we build a quorum system?
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Invoke a Quorum of Replicas

I Access state stored at each replica

I To contact a quorum:
I Must collect and associate replies from individual replicas
I Not difficult in general, but adds complexity
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Invoke a Quorum using RPCs
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Invoke a Quorum using a Quorum Call
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A Single-server Read/Write Storage
1 service Storage {
2 rpc Read( ReadRequest ) returns (State) {
3

4 }
5 rpc Write(State) returns ( WriteReply ) {
6

7 }
8 }
9

10 message State {
11 string Value = 1;
12 int64 Timestamp = 2;
13 }
14

15 message WriteReply {
16 bool New = 1;
17 }
18

19 message ReadRequest {}
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A Quorum-based Read/Write Storage
1 service Storage {
2 rpc Read( ReadRequest ) returns (State) {
3 option ( gorums .qc) = true;
4 }
5 rpc Write(State) returns ( WriteReply ) {
6 option ( gorums .qc) = true;
7 }
8 }
9

10 message State {
11 string Value = 1;
12 int64 Timestamp = 2;
13 }
14

15 message WriteReply {
16 bool New = 1;
17 }
18

19 message ReadRequest {}
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Gorums Abstractions

I Configurations
I Quorum Call
I Quorum Functions
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Abstraction #1: Configurations

I Replicas grouped into configurations
I Configuration implements the StorageClient interface

I Quorum specification object:
I Specifies a quorum system for the configuration
I Simple examples only need quorum size parameter
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Configuration and Quorum Specification
type Configuration s t r u c t {

id u i n t 3 2
nodes []* Node
n i n t
mgr * Manager
qspec QuorumSpec

}

type MajorityQSpec s t r u c t {
quorumSize i n t

}
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Configuration and Quorum Specification
type Configuration s t r u c t {

id u i n t 3 2
nodes []* Node
n i n t
mgr * Manager
qspec QuorumSpec

}

type MajorityQSpec s t r u c t {
quorumSize i n t

}

func (c * Configuration ) Read(ctx Context , a * ReadRequest ) (* State , e r r o r ) {
...
replyChan := make(chan internalValue , c.n)
f o r _, n := range c.nodes {

go callGRPCRead (ctx , a, n, replyChan )
}
...

}
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Abstraction #2: Quorum Call

I Invoke quorum call on a configuration
I Wait for responses from a quorum

WriteReply, Error := config.Write(state State)

Gorums University of Stavanger



16/50

Quorum Call Illustrated

gRPC servers

Gorums client

Gorums

Quorum Call

Quorum 
Function

Invoke 
RPCs

S1 S3S2

RequestReplies
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Quorum Logic

I A quorum call needs to determine
I If a quorum of responses have been received
I What kind of response to return

I Quorum logic: rules for verifying a quorum from
individual replies
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Motivation: Separation of Concerns

I Quorum logic is often intertwined with protocol logic
I Our goal: separate quorum logic from the main control

flow of a protocol’s operation
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Abstraction #3: Quorum Functions

I Gorums uses quorum functions to specify quorum logic
I Each service method has a developer-defined quorum

function

WriteReply, Bool := qs.WriteQF(replies [ ]WriteReply)

I Gorums runtime calls this quorum function for each reply
received
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Quorum Specification Interface

type QuorumSpec i n t e r f a c e {
ReadQF ( replies []* State) (* State , bool )
WriteQF ( replies []* WriteReply ) (* WriteReply , bool )

}
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Quorum Function #1 (simple majority)

Algorithm 1 Simple quorum function
1: func (qs QuorumSpec) ReadQF(replies [ ]State)
2: if len(replies) ≥ qs.QSize then . check quorum size
3: return replies[0], true . quorum, return reply
4: return nil, false . no quorum yet
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Quorum Function #2 (basic reply checking)

Algorithm 2 Paxos first phase quorum function
1: func (qs QuorumSpec) PaxosPrepareQF(replies [ ]Promise)
2: if len(replies) < qs.majQSize then . majority quorum size
3: return nil, false . no quorum yet, await more replies
4: reply := new(Promise) . initialize reply with nil/0 fields
5: for r := range replies do
6: if r.ballot > reply.ballot then
7: reply.ballot := r.ballot
8: if r.vballot ≥ reply.vballot then
9: reply.vballot := r.vballot

10: reply.value := r.value
11: return reply, true . quorum found
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Quorum Function #3 (complex)

Algorithm 3 EPaxos PreAccept quorum function
1: func (qs QuorumSpec) PreAcceptQF(replies [ ]PreAccReply)
2: if replies[len(replies)−1].Type = Abort then
3: return replies[len(replies)− 1], true . single Abort
4: if len(replies) < qs.SlowQSize then
5: return nil, false . no quorum yet
6: reply := new(PreAccReply) . initialize reply with nil/0 fields
7: for r := range replies do
8: if r.Type = Conflict then
9: reply.Type := Conflict

10: reply.Conflicts := reply.Conflicts ∪ r.Conflicts
11: if reply.Type = Ok ∧ len(replies) < qs.FastQSize then
12: reply.Type := Conflict
13: return reply, false
14: return reply , true
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Quorum Function Template

Template for quorum functions
0: func (qs QuorumSpec) MethodQF(replies [ ]MethodReply)
1: if qs.Abort(replies[len(replies)− 1]) then . check last reply

return replies[len(replies)− 1], true . abort call
2: if len(replies) < qs.QSize then . check quorum size

return nil, false . no quorum yet, await more replies
3: if ¬qs.IsQuorum(replies) then . check content for quorum

return nil, false . no quorum yet, await more replies
4: reply := qs.Combine(replies) . combine replies into single reply
5: if qs.WaitForMore(replies) then

return reply, false . return possible but prefer waiting
6: return reply, true . terminate call and return

Gorums University of Stavanger



25/50

Quorum Call Semantics

# QFunc return Quorum call action
Reply, Bool return Reply, Error

1 retval , true return retval , nil and terminate call
2 retval , false if possible: wait for further replies

else: return retval , IncompleteError

Invoked by Gorums:
WriteReply, Bool := qs.WriteQF(replies [ ]WriteReply)

User code:
WriteReply, Error := config.Write(state State)
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Implementation

I Gorums is implemented as a library in Go
I Code generation from service definition:

I Creates a library for clients (and servers)
I Enabling invocation of quorum calls on configurations

I Builds on established toolchain:
I Protocol Buffers and gRPC
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Implementation Overview

Gorums
client

Configuration
Manager
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Code Generation

service Storage {
rpc Read(Request) returns (State) {}
rpc Write(State) returns (Response) {}
…

}

func(c *Configuration) Write(s *State) *Response {
...

}

...

Compiler
w/plugins

Service definition using IDL

Generated source/library

ServerClient

Server
Client Server

Sx

RPC

Quorum call
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Case Studies
I Reconfigurable Atomic Storage

I SmartMerge [DISC’15], DynaStore and Rambo
I Evaluating different reconfiguration algorithms [OPODIS’16]

I Simple Majority Quorums
I Consensus: Single-decree Paxos
I State machine replication: Raft

I Latency-efficient Quorums
I State machine replication: EPaxos [SOSP’13]
I Evaluate complex quorum logic [IDCDS’17]

I Byzantine Quorums: Byzantine Storage
I Requires verifying digital signatures in the quorum function
I Evaluate different quorum functions

I Erasure Coded Distributed Storage
I Requires encoding/decoding of data and parity shards

I Asynchronous Quorum Call
I Futures, Correctables, and Streaming replies
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Initial Motivation: Reconfiguration

I Reconfiguration: dynamically changing the replica set
I Difficult to implement correctly
I Previous work: implemented a Paxos-based RSM with

support for several reconfigurations protocols
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Initial Motivation: Reconfiguration
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Simple Majority Quorums
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Single-decree Paxos: Non-faulty Execution
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Single-decree Paxos: Proto File

1 service SinglePaxos {
2 rpc Prepare ( PrepareMsg ) returns ( PromiseMsg ) {
3 option ( gorums .qc) = true;
4 }
5 rpc Accept ( AcceptMsg ) returns ( LearnMsg ) {
6 option ( gorums .qc) = true;
7 }
8 rpc Commit ( LearnMsg ) returns (Empty) {
9 option ( gorums .qc) = true;

10 }
11 }
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Single-decree Paxos: Proto File 2
1 message PrepareMsg {
2 uint32 rnd = 1;
3 }
4

5 message PromiseMsg {
6 uint32 rnd = 1;
7 uint32 vrnd = 2;
8 Value vval = 3;
9 }

10

11 message AcceptMsg {
12 uint32 rnd = 1;
13 Value val = 2;
14 }
15

16 message LearnMsg {
17 uint32 rnd = 1;
18 Value val = 2;
19 }
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Single-decree Paxos: Protocol Phases

func (p * Proposer ) runPaxosPhases () e r r o r {
// PHASE ONE: send Prepare to obtain quorum of Promises
preMsg := & PrepareMsg {Rnd: p.crnd}
prmMsg , err := p. config . Prepare ( preMsg )
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Single-decree Paxos: Protocol Phases

func (p * Proposer ) runPaxosPhases () e r r o r {
// PHASE ONE: send Prepare to obtain quorum of Promises
preMsg := & PrepareMsg {Rnd: p.crnd}
prmMsg , err := p. config . Prepare ( preMsg )

// PHASE TWO: send Accept to obtain quorum of Learns
i f prmMsg . GetVrnd () != Ignore {

// promise msg has a locked -in value; update proposer state
p.cval = prmMsg . GetVval ()

}
// use local proposer ’s cval or locked -in value from promise msg , if any.
accMsg := & AcceptMsg {Rnd: p.crnd , Val: p.cval}
lrnMsg , err := p. config . Accept ( accMsg )

// PHASE THREE: send Commit to obtain a quorum of Acks
ackMsg , err := p. config . Commit ( lrnMsg )

}
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Latency-efficient Quorums
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Latency-efficient Quorums

I EPaxos: State machine replication protocol
I Complex quorum logic

I Majority and fast quorums
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Latency-efficient Quorums: Quorum Function

Algorithm 5 EPaxos PreAccept quorum function
1: func (qs QuorumSpec) PreAcceptQF(replies [ ]PreAccReply)
2: if replies[len(replies)−1].Type = Abort then
3: return replies[len(replies)− 1], true . single Abort
4: if len(replies) < qs.SlowQSize then
5: return nil, false . no quorum yet
6: reply := new(PreAccReply) . initialize reply with nil/0 fields
7: for r := range replies do
8: if r.Type = Conflict then
9: reply.Type := Conflict

10: reply.Conflicts := reply.Conflicts ∪ r.Conflicts
11: if reply.Type = Ok ∧ len(replies) < qs.FastQSize then
12: reply.Type := Conflict
13: return reply, false
14: return reply , true
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Experimental Evaluation

I The cost of abstraction
I Two sets of benchmarks:

I Micro-benchmarks
I EPaxos system benchmarks

I Original EPaxos modified to use Gorums
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Gorums Micro-benchmarks
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EPaxos Benchmarks
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Byzantine Storage
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Byzantine Storage: Overview

I Authenticated-Data Byzantine Quorum
I Textbook algorithm [RSDP]
I Single Writer: digitally signs and updates storage servers
I Multiple Readers: read latest version from storage servers and

verify the writer’s signature

I Assumptions:
I Servers may be Byzantine faulty
I Readers and the writer are non-Byzantine
I Algorithm need n = 3f + 1 servers to tolerate f faulty servers
I Thus, (n + f)/2 valid replies form a quorum
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Byzantine Storage: Architecture

Trusted Components
(Compute Nodes)

Trusted Components

Writer 
Client

Untrusted Components
(Storage Nodes)
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SDSC

LLNL

Write
() Read

()
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Byzantine Storage: Quorum Specification
type AuthDataQ s t r u c t {

n i n t // size of system
f i n t // tolerable number of failures
q i n t // quorum size q=(n+f)/2
pub *ecdsa. PublicKey // public key of the writer

}

func (aq * AuthDataQ ) ReadQF ( replies []* Value) (* Value , bool ) {
i f l e n ( replies ) <= aq.q {

r e t u r n n i l , f a l s e // not enough replies
}
f o r _, reply := range replies {

i f aq. verify (reply) {
i f reply. Timestamp <= highest . Timestamp {

co nt in ue
}
highest = reply

}
}
r e t u r n highest , t r u e

}
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Performance Evaluation of Quorum Functions

I Easy to test and compare different quorum functions for
same protocol

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Insecure
Secure No Verify

Sequential
Last Reply

Parallel
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Gorums University of Stavanger



48/50

Ongoing and Future Work

I Model-based Testing techniques to improve correctness
I Meta configurations
I Pre-call adaptation

I Sign outgoing messages
I Split and encode outgoing messages

I All-to-all communication between servers
I Useful in many Byzantine fault tolerant protocols

I More protocol examples
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Conclusions

I Gorums’ Abstractions
I force separation of protocol logic and quorum logic
I seems to work well for a diverse set of protocols

I Easy to test quorum functions without running full protocol
I Throughput and latency overhead is mostly negligible
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Thank you!
Questions?

http://www.github.com/relab/gorums
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