
Bettina	Kemme
School	of	Computer	Science

McGill	University

Cesar	Cañas,	Joerg Kienzle,	Suhail
Kandanur,	Kaiwen Zhang,	Mona	El	
Saadawy,	Maximilian	Schiedermeier,	

Shiquan Zhang

2

Upreach and	Downreach

Distributed	
System,
Middleware

Network

Application

Graph	- based	pub	/	sub

3

• Topic	based
• Content	based
• Subscriptions	are	queries	over	publication	content

• Attributes/value	and	filters
• XML	and	XQuery
• RDF	graphs	and	graph	queries

4

Pub/Sub	Systems

P1

P2

S1

S2

S3

Pub/Sub	Service:

CBC:	S1,	S2

M=
{T=CBC,“xyz”)

M

M

• Scalability
• Availability	&	Fault	
Tolerance
• Low	Latency
• Delivery	guarantees

• Many	techniques	from	
research
• Quorums,	
Zookeeper,	commit-
log,	pull	vs.	push…..

• Many	research	
prototypes
• Pipelining,	
component-based,	
...

5

System	Research

P1

P2

S1

Kafka	Cluster

Brokers
P0	– R1

P2	– R1

P0	– R2

P1	– R1

P0	– R2

P2	– R2

Zookeeper

S2

S3

S4

6

Applications
Dynamoth: Scalability & Availability MultiPub: Latency & Cost Optimization DynFilter: Bandwidth Optimization Conclusion Extra Slides

Applications of Topic-Based Pub/Sub 4

Traffic alert systems

Mobile notif. frameworks

Chat/IM systems

Weather alert systems

Social networks

Multiplayer Games

Desirable properties:
Scalability &
Elasticity
Availability &
Fault Tolerance
Low Latency
Reduced &
Predictable
Costs

Understanding	the	application	and	its	needs	drive	the	
development

1. GraPS
• Merging	Data	Management	with	pub/sub

2. Evolving	subscriptions
• Enable	fast-changing	interest

3. CacheDOCS
• Mixing	caching	with	pub/sub

7

Extending	the	core	functionality	of	pub/sub

8

Application	Graph:	Transit	Network

3

51

51
51,80

2,5180

80
80

2

2,24
24

• Subscriptions:	
• The	3	stops	before	my	stop
• Max	Distance	of	6	minutes	from	my	stop

• Publications: Whenever	a	bus	arrives	at	a	bus	
stop

D=2

3,51

D=1

D=3

D=1

D=3

D=3

D=1

D=1

D=2

D=2 D=2

9

Application	Graphs:	Street	Maps
• Traffic	Monitoring

• Publications: Traffic	Information	
on	each	segment

• Subscriptions:	Path	to	be	travelled

10

Knowledge	Graphs:	Soccer	Teams

BARCE
LONA

REAL
MADRID

• Publication:	
• Info	about	a	
certain	team

• Published	on	a	
node

• Subscriptions:	
• all	teams	my	team	
is	related	to

• Graph	query

11

Graph-based	pub/sub
• The	application	domain	is	represented	as	a	graph	or	multiple	
graphs	that	are	stored	as	meta-information	in	our	system.

11

o Subscriptions:
o Expressed	as	graph-query
o Returns	a	sub-graph

Subscribe	(hopDistance (N1,		2));	

N2N1 N3

N5N4 N6

N8N7 N9

N2N1 N3

N5N4

N7
o Publications:
o On	a	node	/	edge
o Graph-query	returning	sub-graph

Publish	(N4,	msg);

N4

Graph	G1

o Match:
o Sub-graph	overlap

12

Graps Implementation

• Publish
• Subscribe
• unsubscribe

Graph	Queries

• Store/delete	Graph
• Update	Graph

• Pub/sub	engine
• Graph	DBS	backend

extended

13

Updating	the	Graph

N2
N1

N3
D=3 D=2

D=2

N2
N1

Subscribe(shortestPath (N1,	N2))
E1 E2

SetEdgeDistance(E1,	5)

• Subscriptions	automatically	
updated	when	graph	changes
• Multiple	Updates	at	the	same	time

E3

14

Multi-Broker	Systems

Publisher

Subscriber	1

Broker	1 Broker	2
Subscriber	2

’’Edge’’	broker	
For	subscribers	1&2 Subscriber	3

Graph	replicated,	subscribers	and	publishers	distributed
*	how	to	know	to	which	broker	to	forward	a	publication
*	how	to	update	the	graph	consistently	

Or	graph	distributed,	subscribers	replicated?
*	what	about	shortest	paths	that	span	multiple	brokers

15

GraPS Summary
• Data	Management	AND
pub/sub
• Scalability	through	distribution	
and	replication
• Consistency	of	graph	updates

16

Towards	a	reuse-driven	design	of	Micro-services

17

Towards	a	reuse-driven	design	of	Micro-services

The	described	process	requires	accurate	models	for	each	stage.

1
8

• Architecture
• TimeService
• APIs:	[Get]	/time/
• Dependencies:	Client	
needs	TimeService

• Context
• e.g.	50	clients,	1	
request/10	ms

• Deployment	information	/	
ports.

Böppel	Model:	Authentication

Architecture	and	Context	Example

1
9

• Concern:	Authentication

• Feature	Options:

• Access	Blocking

• Authentication	Means

• Token

• Name

• Auto	Logoff

Plug-and-play:	Authentication

2
0

• Architecture
• TimeService,	
NameAuthService

• APIs:	[Get]	/authTime/,	
/isAuthorized/

• Dependencies:	Client	needs	
TimeService	needs	
AuthService

• Context
• e.g.	50	clients,	1	
request/10	ms

• Deployment	information	/	
ports.

Böppel	Model:	Authentication

Architecture	and	Context	Example

2.	Infer	Micro-Service
Architecture

1.	Select	Micro-Service	concerns
&	features	to	reuse

3.	Examine	properties

❖ Not	all	selections	translate	directly	into	services!

❖ Authentication ->	New	extra	service

❖ Encryption ->	New	arrangement

Translating	Reuse	Selections

22

Translating	Reuse	Selections

Functional	vs.	Non-functional

❖ Functional

❖ Time-service,	Authentication	Service

❖ Non-functional

❖ Load-balancing,	fault-tolerance,	encryption

❖ Or	is	it	really	so	easy	to	distinguish	between	the	two?

23

• Concern:	Load	Balancing

• Feature	Options:

• Client	Side

• Netflix	Ribbon

• Server	Side

• Nginx

• AWS	ELB

Example	2:	Load	Balancing

2
4

• Architecture
• LoadBalancer,	2x	
TimeService

• APIs:	[Get]	/time/
• Dependencies:	Client	
needs	LoadBalancer	needs	
TimeService

• Context
• 50	Clients,	1	call	/	10	ms.
• Deployment	information	/	
ports.

Example	2:	Load	Balancing

2.	Infer	Micro-Service
Architecture

1.	Select	Micro-Service	concerns
&	features	to	reuse

3.	Examine	properties

The	reuse	approach

26

• Quantitative	properties

• Performance

• Cost

• Qualitative	properties

• Reliability

• Security

• Maintainability	

Architecture	Evaluation

27

Modeling	rational	behavior	in	Blockchain mining

• In	most	Proof-of-Work	(PoW)	blockchain	systems,	including	Bitcoin,	honest	
miners always	choose	to	mine	on	top	of	the	longest	chain.	

• Rational	miners	might	choose	an	alternative	strategy	if	the	expected	reward	is	
eventually	larger	than	the	proportion	of	their	mining	power.

• Eyal et	al.[1] describes	selfish	mining as	one	form	or	rational	mining.

• They	use	a	1D	Markov	model	to	specifically	analyze	the	profitability	when	there	
is	one	selfish	miner	(or	mining	pool)	and	one	honest	miner	(all	honest	are	
grouped	together	as	one	large	honest	miner).

• The	strategy	is	profitable	when	the	mining	power	is	between	1/4	and	½.	

Rational	Mining	Behavior	in	Blockchain

Model	other	strategies?

• Selfish	Mining
• Does	not	release	the	newly	mined	block	immediately	but	

waits	until	the	length	of	the	public	chain	catches	up	with		the	
private	chain

• Gives	up	when	the	public	chain	is	longer
• Gains	higher	proportion	of	rewards	by	overwriting	the	public	

chain
• Wastes	the	mining	power	of	honest	miners

• Stubborn Mining
• Does	not	give	up	even	if	lagging	behind	the	public	chain
• Overwrites	the	public	chain	by	chance
• wastes	the	mining	power	of	honest	miners

• Selfish	mining

• When	𝑝 > #$%
&$'%

,		𝐄 𝑟𝑨 > 𝑝

2D	Markov	Model:	Selfish	Mining

When	𝑝 > 43.0% ,		
E 𝑟1 > 𝑝

Fig. 6 2D Markov Model of Naive Stubborn Mining

2D	Markov	Model:	Stubborn	Mining

Simulation	of	Multi-player	game

• Assumption: more than one selfish miner
• Assumption realistic:

Other miners can detect that there is a selfish attack but cannot identify the attacker.
Selfish miners themselves will not publish their identity to avoid being expelled
Rational miners, when detecting that somebody else is selfish, might start being
selfish themselves.

• Simulator for 3-player game
2 selfish miners, one honest miner

Results

Fig. 10 Rewards of Honest Miner and Attackers in 3-player Game

• Rewards of different miners by the mining power of attacker 1/ attacker 2 (heatmap)

3-player	game

• There	exists	a	small	area	where	it	can	be	profitable	for	both	
attackers	simultaneously,	for	example,	when	 𝑝2, 𝑝1#, 𝑝1' =
	 0.5, 0.25, 0.25 ,	the	profitability	of	each	miner	is	
𝑃𝑟𝑜𝑓𝑖𝑡2, 𝑃𝑟𝑜𝑓𝑖𝑡1#, 𝑃𝑟𝑜𝑓𝑖𝑡1' = 	 0.4565, 0.2718	0.2717 	.

• It	won’t	be	profitable	if	the	attacker’s	mining	power	is	under	20%.
• The	reward	of	the	first	attacker	slightly	increases	when	the	
second	attacker	comes	in.	And	it	decreases	drastically	when	the	
second	attacker	becomes	dominant.

• The	reward	for	the	attackers	would	be	larger	if	they	worked	
together	as	one	big	attacker.	That	is,	finding	other	selfish	miners	
is	more	beneficial	compared	to	attacking	alone.

• FAIR	Principle	of	Data	Management:
• Findable
• Accessible
• Interoperable
• Reusable

• Open	Science
• Collaborative
• Transparency
• Reproducibility

• Data	Transformations	performed	by	distributed	programs

• Tools	needed
• Distributed	Data	Management
• Large-scale	workflow	based	computations	(flavor	Spark)
• Development	kitchen
• Project	Provenance

Open	Data	Science

• Application	centric	view
• Detect	new	application	needs
• Data	centric	(graph)
• Mining	behavior	in	bitcoins
• Open	Data	Science

• Weaving	functional	and	non-functional	modeling
• Find	generic	solution
• Make	it	work

37

Application	Driven	System	Development

38

Network-level	Monitoring-aaS

39

Research	Objective

40

41

Monitoring	options	in	the	Network

42

Proposed	port	sniffer

• Request	response	time
• Throughput
• Overall
• Per	object/method/client

• Number	of	different	clients
• Error	Rate
• ?

43

What	to	monitor

44

Current	Prototype

Teaching	and	Training

45

• Distributed	Systems	Course
• What	are	”classic	topics”
• What	are	new	developments	that	are	a	“must”
• What	are	the	skills	to	be	learned

• Distribution,	consistency,	dependability	everywhere
• How	to	coordinate	with	other	courses

• What	should	a	PhD	student	all	do
• Internships?
• Collaboration?
• Supervision?

46

Teaching	and	Training	Interests

