/
I‘ _
/

Bettina Kemme
School of Computer Science

Cesar Cafas, Joerg Kienzle, Suhail
Kandanur, Kaiwen Zhang, Mona El

Saadawy, Maximilian Schiedermeier,
o Bl & Shiquan Zhang

Sy

McGill University

call Upreach and Downreach

Application

Distributed
System,
Middleware

Network

Graph - based pub / sub

call Pub/Sub Systems

* Topic based

 Content based

* Subscriptions are queries over publication content

o Attributes/value and filters
XML and XQuery
* RDF graphs and graph queries

M=
@{ECBC,”xyz”)
—| Pub/Sub Service: M Q
—
@ CBC: S1, S2 @

EACHE f k
A distributed s’rrgaming platform

Kafka Cluster * Scalability

* Availability & Fault
Brokers ﬂ

Tolerance
* Low Latency
* Delivery guarantees

|« Many techniques from
| . research
- * Quorums,
\ Zookee\oer, commit-
log, pull vs. push.....
. » Many research
. prototypes
* Pipelining,
component-based,

\
\I P2 - R2
<> PO - R2 %\

‘ Zookeeper

W Bl &

Traffic alert systems Weather alert systems

y v

Mobile notif. frameworks Social networks

() y

Google clol
Yy

Chat/IM systems Multiplayer Games

Extending the core functionality of pub/sub

Understanding the application and its needs drive the
development

1. GraPS
* Merging Data Management with pub/sub

2. Evolving subscriptions
* Enable fast-changing interest

3. CacheDOCS
* Mixing caching with pub/sub

/
\ /

Y

Application Graph: Transit Network

* Subscriptions:
* The 3 stops before my stop
* Max Distance of 6 minutes from my stop

e Publications: Whenever a bus arrives at a bus
stop

<ol Application Graphs: Street Maps
Traftic Monitoring
» \ QOO 1/ :ti ’ X .

 Publication:

B ﬂ."&'\'éﬁz?«- : :n re
e TS - * Info about a

certain team

e Published on a
node

* Subscriptions:

N o REAL all teams my team
. | MADRID is related to

* Graph query

P
Vi 7

'q Juventus FIC

Roma

The Gravh Of Association Football T'eams
By Brendan Griften www.griffsgraphs.com s S

all Graph-based pub/sub

* The application domain is represented as a graph or multiple
graphs that are stored as meta-information in our system.

o Subscriptions:

Graph G1

o Expressed as graph-query
o Returns a sub-graph

Subscribe (hopDistance (N1, 2));

o Publications:

o On a node / edge
o Graph-query returning sub-graph

Publish (N4, msg); "
o Match:

o Sub-graph overlap

11

Graps Implementation

e Publish
e Subscribe
* unsubscribe

R extended
Q&AJH:J
1 Graph Queries

@neoqj

—

h

 Store/delete Grap
* Update Graph -

* Pub/sub engine
* Graph DBS backend

12

=l Updating the Graph

Subscribe(shortestPath (N1, N2))

SetEdgeDistance(E1l, 5)

e Subscriptions automatically
updated when graph changes

* Multiple Updates at the same time

13

Multi-Broker Systems

"Edge’’ broker
For subscribers 1&2

[Subscriber 3]

[Subscriber 1 X /

Broker 1 Broker 2 ‘[Publisher]

[Subscriber 2

Graph replicated, subscribers and publishers distributed
* how to know to which broker to forward a publication
* how to update the graph consistently

Or graph distributed, subscribers replicated?
* what about shortest paths that span multiple brokers

14

cll GraPS Summary

* Data Management AND i .
pub /Sub ‘ : fd#r\[)r(:a‘

* Scalability through distribution g | | l |
and replication | @neoy

* Consistency of graph updates

15

Towards a reuse-driven design of Micro-services

16

Towards a reuse-driven design of Micro-services

How would you design a Micro-Service system ?

= 9\2}{" = [

al
0o

ASS S AN NAS N

RSO RS N N &

1. Select Micro-Service concerns 2. Infer Micro-Service , ,
. 3. Examine properties
& features to reuse Architecture

The described process requires accurate models for each stage.

17

Architecture and Context Example
t43

. Architecture

. TimeService

(803
. APIs: [Get] /time/ oo TimeService/
- Dependencies: Client Ulvwe/
needs TimeService L (@)
- Context
- e.g.50clients, 1
Carl
request/10 ms Jied

- Deployment informationy
ports.

Plug-and-play: Authentication

- Concern: Authentication (——
. Feature Options: ‘3.

- Access Blocking

. Authentication Means

. Token

- Name

. Auto Logoff

. Architecture

- TimeService,
NameAuthService

. APIs: [Get] /authTime/,
JisAuthorized/

- Dependencies: Client needs
TimeService needs
AuthService

. Context

. e.g.50clients, 1
request/10 ms

. Deployment information /
ports.

Boppel

O o [o]
1 ¥

\O

P el

1. Select Micro-Service concerns
& features to reuse

Architecture

+ Not all selections translate directly into services!

« Authentication -> New extra service

« Encryption -> New arrangement

=)

2. Infer Micro-Service

3350888\ N
bS8 O\ S\ N

3. Examine properties

teaf] Functional vs. Non-functional
o4

+ Functional
+ Time-service, Authentication Service
+ Non-functional
+ Load-balancing, fault-tolerance, encryption

» Orisitreally so easy to distinguish between the two?

22

Example 2: Load Balancing

Concern: Load Balancing <

Feature Options:
Client Side
Netflix Ribbon
Server Side
Nginx
AWS ELB

23

Example 2: Load Balancing
A4

. Architecture

- LoadBalancer, 2x
TimeService

.- APIs: [Get] /time/

- Dependencies: Client
needs LoadBalancer needs
TimeService

- Context
. 50 Clients, 1 call / 10 ms. Curl ’

. Deployment information /
ports.

3 The reuse approach

P
e

:.> Q\Ej‘,’zf —_—> A

2. Infer Micro-Service 3. Examine properties
& features to reuse Architecture

ASS R AONSNN\S §

(3 20 S8 e N
Az

Architecture Evaluation

- Quantitative properties

. Performance XY Plot

0.80 =
oL @ BmJ + lookupSystemTime
. (Cost
650 - ¥ cPu 25 DoublePMF((8.0; 0.2)(10.0; 0.6)(12.0; 0.2)] <CPU>
Scheduling: First-Come-First-Serve FailureOccurrenceDescriptions
ZSE) Number of Replicas: 1 InfrastructureCallsCompartment
- - - ™1 Processing Rate: 100
. Qualitative properties
0.55 MTTR: 0 @ Population: 8
_ ™ @Think Time: DoublePMF[(0.9; 0.2)(1.0; 0.6)(1.1; 0.2)]
@ 0.50
liabilit :
. Reliability ol .
o
2 0.40
5]
o
. 3 035
o
- Securit -
0.30 |
0.25
L] L] L] L]
0.20 L]] [1 =B] =
. daintalnaplliity " . .
0.15 - i []
] [] [] []
0.10 {m [| SRR | [I] - EEE--E | B N L BEE B BEE RRR N RO N [M zEE EE---E
] [] [] [] []
0.05
0.00

00 05 1.0 1.5 20 25 30 35 40 45 50 55 60 65 7.0 7.5 80 85 90 95 100
Point in Time [s]

m 1: Call_getTimeO <EntryLevelSystemCall id: _rhu7AlIREem6y7FGwPojNA >

26

/
I‘ _
/

Modeling rational behavior in Blockchain mining

27

Rational Mining Behavior in Blockchain
t44

* In most Proof-of-Work (PoW) blockchain systems, including Bitcoin, honest
miners always choose to mine on top of the longest chain.

* Rational miners might choose an alternative strategy if the expected reward is
eventually larger than the proportion of their mining power.

* Eyal et al.lt! describes selfish mining as one form or rational mining.

* They use a 1D Markov model to specifically analyze the profitability when there
is one selfish miner (or mining pool) and one honest miner (all honest are
grouped together as one large honest miner).

* The strategy is profitable when the mining power is between 1/4 and %.

] Model other strategies?

e Selfish Mining

* Does not release the newly mined block immediately but
waits until the length of the public chain catches up with the

private chain

e Gives up when the public chain is longer

* Gains higher proportion of rewards by overwriting the public
chain

* Wastes the mining power of honest miners

public chain
fork point

private chain

e Stubborn Mining

* Does not give up even if lagging behind the public chain
* Overwrites the public chain by chance
* wastes the mining power of honest miners

public chain
fork

point 2

private chain

2D Markov Model: Selfish Mining

e Selfish mining

w8
p

O O O ,'Q"Winning * When D > 31_;2);) E[TA] > p

4 .
¢
.
’ .
O O . . .
% ’
P ”,
.
.
-
.

Honest

~ ~
. ~
.)
~ .
.~ ~
~
.
.
-~
~
. D
. .
.~ ~
. ~
.
.
~
~

Attacker

Whenp > 43.0% ,
Elral >p

Honest

Losmg

’
’,
.
=N
W\
N
. .

2»0*0 O O O O

=>()
Y/
PRL 3
A
O
O~
O
O
O
O

1 p s Py
= ’
= V4 7
~ "
.
.35

Attacker

Fig. 6 2D Markov Model of Naive Stubborn Mining

Simulation of Multi-player game

e Assumption: more than one selfish miner

* Assumption realistic:
Other miners can detect that there is a selfish attack but cannot identify the attacker.
Selfish miners themselves will not publish their identity to avoid being expelled
Rational miners, when detecting that somebody else is selfish, might start being

selfish themselves. N——

|
WAYICN:0.5%

BTC.com: 20.2 %

* Simulator for 3-player game

2 selfish miners, one honest miner okpool.top: 0.8 %

Bitcoin.com: 0.5 %

BitClub: 1.0 %

Bixin: 1.1 % /
BitFury: 4.0% '
Huobi.pool: 5.3% /| F2Pool: 12.6 %
unknown: 5.9 %

ViaBTC: 7.4 %
SlushPool: 8.3%

BTC.TOP:87% ——
AntPool: 12.6 %

Poolin: 10.8 %

w B

Results

* Rewards of different miners by the mining power of attacker 1/ attacker 2 (heatmap)

1.0
Reward of Honest Miner Reward of Attacker 1 Reward of Attacker 2
~ 0.8
S« E
-fj <]
S
< 4 | 0.6
“s o
—
%)
& o - 0.4
=11]
k=
= - |
ot O
= L 0.2
o 1 | | | | & | | | |
©0.01 011 021 031 041 001 011 021 031 041 001 011 021 031 0.41
Mining Power of Attacker 1 Mining Power of Attacker 1 Mining Power of Attacker 1 = 50

Fig. 10 Rewards of Honest Miner and Attackers in 3-player Game

3-player game

* There exists a small area where it can be profitable for both
attackers simultaneously, for example, when (py, Pa1, Paz) =
(0.5,0.25, 0.25), the profitability of each miner is
(Profity, Profit,,, Profit,,) = (0.4565,0.2718 0.2717) .

* |t won’t be profitable if the attacker’s mining power is under 20%.

* The reward of the first attacker slightly increases when the
second attacker comes in. And it decreases drastically when the
second attacker becomes dominant.

* The reward for the attackers would be larger if they worked
together as one big attacker. That is, finding other selfish miners
is more beneficial compared to attacking alone.

Open Data Science

* FAIR Principle of Data Management:
* Findable
* Accessible
* Interoperable
* Reusable

* Open Science
* Collaborative
* Transparency
* Reproducibility
* Data Transformations performed by distributed programs

* Tools needed
e Distributed Data Management
e Large-scale workflow based computations (flavor Spark)
* Development kitchen
* Project Provenance

* Application centric view

* Detect new application needs
e Data centric (graph)
* Mining behavior in bitcoins
* Open Data Science

* Weaving functional and non-functional modeling
* Find generic solution
* Make it work

sl Application Driven System Development

37

ol Network-level Monitoring-aaS

Traditional Network Software-Defined Network

Switch

Programmable

Switch Controller

Control Plane

Datacomm company website: https://www.datacomm.co.id/en/telco/sdn/

38

<l Research Objective

Application

Presentation

:

Session

Transport

!

Network

\ 4

Data link

:

Physical

OSI| Model

39

Monitoring Approaches

/\

End host Network component

e T

Hardware resource Instrumentation Sniffer instrumentation Port sniffer

measures

/\

Port mirror Selective forwarding

40

w B

iltered traffic Tunneled mirrored packet format
% | outer header

S
: : = ‘l Tunnel protocol header
App AppB1 |: AppC nalys
App Al B P : s tool Payload:
- L2 header, L3 header,
“t:'d{'s's . L4 header, and
» \ ‘ original payload.
Rack 1 Rack 2 Rack n-1 Rack n Rack 1 Rack 2 Rack n-1 Rack n
(A) Port/Selective mirroring (B) Tunneled selective mirroring

41

- - = Onsite analysis
- - - P Offsite analysis

(’t Smffer/ Ana1y5|s

Output j mirrored packet from port sniffer

.".-’r /——\
(4 TCP/UDP header
.......... IP header
App Al __tool Ethernet header
Payload: selected
information from original
packet header and data.
- o’ _ .~ v
Rack 1 Rack 2 Rack n

42

ol \What to monitor

* Request response time

* Throughput
e Overall
* Per object/method/client

e Number of different clients

* Error Rate
¢ ?

43

ll Current Prototype

\\ sniffer/ MySQL container

g v
.l ‘
: N £y
YCSB client(s) ‘ Tomcat webserver
container

OVS

%A

Memcache container

Monitoring application 4
Frontend (VUE) < p» RUST back-end container

44

Teaching and Training

45

Teaching and Training Interests

* Distributed Systems Course
 What are “classic topics”
 What are new developments that are a “must”
* What are the skills to be learned

* Distribution, consistency, dependability everywhere
e How to coordinate with other courses

 What should a PhD student all do
* Internships?
e Collaboration?
* Supervision?

46

